Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Anwar Usman,^a Ibrahim Abdul Razak,^a Hoong-Kun Fun,^a* Suchada Chantrapromma,^a† Jing-Zhi Tian,^b Yan Zhang^b and Jian-Hua Xu^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

+ Permanent address: Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study T = 183 K Mean σ (C–C) = 0.004 Å R factor = 0.054 wR factor = 0.131 Data-to-parameter ratio = 13.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 \bigcirc 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

N,N-Dibenzoyl-4-chloroaniline

In the title compound, $C_{20}H_{14}CINO_2$, the three aromatic rings are almost orthogonal to one another. The molecular packing is stabilized by weak $C-H\cdots\pi$ interactions and van der Waals forces. Received 21 February 2002 Accepted 26 February 2002 Online 8 March 2002

Comment

Photoinduced electron transfer (PET) reactions of organic compounds have been receiving extensive investigation in recent years (Scheinbaum, 1964; Kavarnos & Turro, 1986; D'Auria *et al.*, 1996). However, PET reactions of nitroaromatic compounds, as electron acceptors, with different types of donors have not been much investigated. As a part of our ongoing research interest in PET reactions of various electron donor–acceptor combinations (Xue *et al.*, 2000, 2001; Zhang *et al.*, 2000), we have recently investigated the photo-induced reactions between nitroaromatic compounds and electron-rich alkenes, such as 1,2-diphenylacetylene. The title compound, (I), a dibenzoylaniline derivative, was isolated from the photoreaction of 4-chloronitrobenzene with 1,2-diphenylacetylene.

The bond lengths and angles in (I) have normal values (Allen *et al.*, 1987). The three aromatic rings A (C1–C6), B (C8–C13) and C (C15–C20) are almost orthogonal to one another (Fig. 1). The dihedral angles between A and B, A and C, B and C are 74.7 (1), 89.8 (1) and 81.6 (1)°, respectively. The O1/C7/C8/N1 amide plane is twisted by an angle of 30.2 (1)° from the benzoyl phenyl ring B, whereas the other amide plane, O2/C14/C15/N1, is twisted by 19.9 (1)° from ring C. The molecular packing in the crystal is stabilized by weak C–H··· π interactions involving aromatic rings B and C (Table 2). In Table 2, Cg(B) and Cg(C) denote the centroids of rings B and C, respectively.

Experimental

The title compound was prepared by the photo-induced reaction of an acetonitrile solution of 4-chloronitrobenzene with an excess

Figure 1

The structure of the compound (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

amount of 1,2-diphenylacetylene and was isolated by column chromatography on silica gel. Single crystals of the compound were obtained by slow evaporation from a petroleum ether–ethyl acetate (2:1) solvent system.

Crystal data

$C_{20}H_{14}CINO_2$	$D_x = 1.337 \text{ Mg m}^{-3}$
$M_r = 335.77$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 3800
a = 10.2697 (2) Å	reflections
b = 9.0419(2) Å	$\theta = 2.2-29.6^{\circ}$
c = 17.9903 (4) Å	$\mu = 0.24 \text{ mm}^{-1}$
$\beta = 92.877 \ (1)^{\circ}$	T = 183 (2) K
$V = 1668.4 (1) \text{ Å}^3$	Block, colorless
Z = 4	0.46 \times 0.20 \times 0.12 mm
Data collection	
Siemens SMART CCD area-	2011 independent reflectio

Sichichis SimAKI CCD alea-	29
detector diffractometer	16
ω scans	$R_{\rm i}$
Absorption correction: multi-scan	$\theta_{\mathbf{n}}$
(SADABS; Sheldrick, 1996)	h
$T_{\min} = 0.898, T_{\max} = 0.972$	k
8993 measured reflections	<i>l</i> =

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.131$ S = 0.892911 reflections 218 parameters H-atom parameters constrained Block, colorless $0.46 \times 0.20 \times 0.12 \text{ mm}$ 2911 independent reflections 1684 reflections with $I > 2\sigma(I)$ $R_{int} = 0.087$ $\theta_{max} = 25.0^{\circ}$ $h = -12 \rightarrow 12$ $k = -10 \rightarrow 10$ $l = -21 \rightarrow 17$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0499P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.32 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$ Extinction correction: *SHELXTL* Extinction coefficient: 0.036 (3)

Table 1

Selected geometric parameters (Å, °).

O1-C7	1.221 (3)	N1-C6	1.445 (3)
O2-C14	1.207 (3)	C7-C8	1.483 (4)
N1-C7	1.413 (3)	C14-C15	1.490 (4)
N1-C14	1.430 (3)		

Table 2		
Hydrogen-bonding ge	eometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C1 - H1 \cdots Cg(B^{i})$ $C10 - H10 \cdots Cg(C^{i})$	0.93 0.93	2.72 2.85	3.597 (2) 3.489 (2)	158 127
······································	1 . 1			

Symmetry code: (i) $\frac{3}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$.

The H atoms were fixed geometrically and were treated as riding on their parent C atoms, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 1990).

The authors thank the Malaysian Government and Universiti Sains Malaysia for research grant R&D No. 305/ PFIZIK/610961. AU thanks Universiti Sains Malaysia for a Visiting Postdoctoral Fellowship.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- D'Auria, M., Esposito, V. & Mauriello, G. (1996). *Tetrahedron*, **52**, 14253– 14272.
- Kavarnos, G. J. & Turro, N. J. (1986). Chem. Rev. 86, 401-449.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Scheinbaum, M. L. (1964). J. Am. Chem. Soc. 29, 2200-2203.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.
- Xue, J., Zhang, Y., Wang, X.-L., Fun, H.-K. & Xu, J.-H. (2000). Org. Lett. pp. 2583–2586.
- Xue, J., Zhang, Y., Wu, T., Fun, H.-K. & Xu, J.-H. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 183–191.
- Zhang, Y., Qian, S.-P., Fun, H.-K. & Xu, J.-H. (2000). Tetrahedron Lett. 41, 8141–8145.